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We apply Grad's moment method, with Hermite moments and Marshak-type 
boundary conditions, to several boundary layer problems for the 
Klein-Kramers equation, the kinetic equation for noninteracting Brownian par- 
ticles, and study its convergence properties as the number of moments is 
increased. The errors in various quantities of physical interest decrease 
asymptotically as inverse powers of this number; the exponent is roughly three 
times as large as in an earlier variational method, based on an expansion in the 
exact boundary layer eigenfunctions. For the case of a fully absorbing wall (the 
Milne problem) we obtain full agreement with the recent exact solution of 
Marshall and Watson; the relevant slip coefficient, the Milne length, is 
reproduced with an accuracy better than 10-6. We also consider partially absor- 
bing walls, with specular or diffuse reflection of nonabsorbed particles. In the 
latter case we allow for a temperature difference between the wall and the 
medium in which the particles move. There is no apriori reason why our 
method should work only for Brownian dynamics; one may hope to extend it 
to a broad class of linear transport equations. As a first test, we looked at the 
Milne problem for the BGK equation. In spite of the completely different 
analytic structure of the boundary layer eigenfunctions, the agreement with the 
exact solution is almost as good as for the Klein-Kramers equation. 

KEY WORDS: Boundary layers; Brownian motion; moment method; Milne 
problem; albedo problem; BGK equation. 

1. I N T R O D U C T I O N  A N D  PREVIEW 

A s y s t e m  of  p a r t i c l e s  d e s c r i b e d  b y  a k i n e t i c  e q u a t i o n  o f t en  re laxes  r a p i d l y  

t o w a r d  a l oca l  e q u i l i b r i u m  s ta te ;  i ts  f u r t h e r  e v o l u t i o n  is t h e n  g o v e r n e d  

b y  m a c r o s c o p i c  h y d r o d y n a m i c  e q u a t i o n s .  In  t h e  h y d r o d y n a m i c  s t age  

t h e  s o l u t i o n  of  t he  k i n e t i c  e q u a t i o n  is of  t he  so -ca l l ed  n o r m a l ,  o r  
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Chapman-Enskog, type, and the hydrodynamic equations can be derived 
from the kinetic one by means of the Chapman-Enskog algorithm. (1'2) 
Complications arise when the boundary conditions for the kinetic equation 
are incompatible with a Chapman-Enskog form for the solution. This may 
be the case when the wall absorbs certain types of particles, or when 
different parts of the wall are kept at different temperatures or velocities. In 
such cases kinetic boundary layers (with a thickness of the order of a mean 
free path, or of a corresponding characteristic length of the system) develop 
near the wall; to analyze these layers one has to go back to the underlying 
kinetic equation. The breakdown of the Chapman Enskog procedure near 
the wall implies that the procedure cannot be used to derive the boundary 
conditions to be used with the hydrodynamic equation; these can be derived 
only from the structure of the kinetic boundary layer. (An example is given 
at the end of Section 3; comments on earlier work are given in Section 6.) 

Thus far there are two exactly solved types of problem involving a 
kinetic boundary layer. Both concern stationary nonequilibrium solutions 
of linear kinetic equations of the type 

c~P(u, r, t) c~ 
~t - -U-~rr P(u, r, t )+  ~P(u, r, t) (1.1) 

in a one-dimensional (half-space or slab) geometry; the function P(u, r, t) 
is the joint probability distribution for velocity and position of the 
particles, and cg is a linear collision operator acting on u only. The first, 
and oldest, exactly solved case is for cg of BGK type, 

c~p= -7 [1  - ~ ] P  (1.2) 

with ~ a relaxation rate and ~ the projection operator on the local equi- 
librium state (or states, when there is more than one conserved quantity). 
A survey of solved cases of this type, and of the available solution techni- 
ques, can be found in ref. 2. Recently, Marshall and Watson ~3'4) found a 
second exact solution, namely for the Klein-Kramers (s'6) case 

~dP = 7 ~uu- u +  P (1.3) 

With this substitution (1.1) becomes the kinetic equation for noninteracting 
Brownian particles of mass m and friction coefficient 7 in a medium with 
temperature T =  (k/~) 1. 

Unfortunately, the exact solutions, especially for the case (1.3), are 
analytically quite involved, and the extraction of specific results requires a 
fair amount of additional numerical effort. Perhaps more importantly, the 
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methods of solution are not easily extendible to different forms of cg 
[though Marshall and Watson were able to treat the case of a constant 
external field, (3) for which u is replaced by u - g / 7  in (1.3)]. On the other 
hand, surprisingly accurate approximations to the exact solution (then still 
unknown) were obtained, in particular by WaldenstrOm etal., ~7~ using a 
simple adaptation of Grad's (8) truncated set of moment equations [derived 
from (1.1) in a manner to be described more fully in Sect ion2] with 
boundary conditions of Marshak type. ~ This method does not depend too 
crucially on the precise structure of ~, and it is extendible without too 
much extra effort (1~ to higher-dimensional cases, especially to highly 
symmetric ones. We therefore decided to explore the potential of this 
moment method, and especially its rate of convergence toward the exact 
solution as the order of truncation is increased. The convergence question 
is of some interest, since an earlier, apparently more systematic approxima- 
tion scheme (12) exhibits an extremely slow rate of convergence. 

In Section 2 we explain our method and apply it to the classical, 
stationary Milne problem, i.e., we solve (1.1) with ~ given by (1.3) with a 
plane wall (at x = 0) that absorbs all Brownian particles that hit it; mathe- 
matically, this means that the solution PM(u, r) must obey 

PM(u;O,y,z)=O for u x > 0  (1.4) 

For  x ~  oe the solution is required to approach a Chapman-Enskog 
solution with a constant current, normalized to unity, flowing toward the 
boundary. The boundary conditions ensure that the solution has the form 

m f l  ,- 1 ,~, 2 ,  u~)] PM(u, r) = pM(ux, x) ~ expL -- gmptuy • (1.5) 

The N-moment approximations N PM(Ux, X) converge toward the exact solu- 
tion, but in a highly nonuniform way. Good convergence is obtained for 
the density profile 

n~(x) = f du x pM(Ux, x) (1.6) 

The approximants nN(x) for high enough N can be fitted with the empiri- 
cal formula (12) 

a~=a~~ +bN ~ (1.7) 

The convergence exponents are about three times as large as in the earlier, 
variational scheme of ref. 12, and the extrapolated values n~(x) agree with 
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the exact values, with a discrepancy smaller than the error in n~(x) caused 
by numerical roundoff. Roundoff errors at present preclude extending the 
calculations beyond N =  25, but this suffices to obtain, e.g., the Milne 
length xM, defined by 

nM(x)~mfl'~(x+xM) for x--,  oo (1.8) 

to six significant figures. The quantity xM is of special interest since it 
enters into the effective boundary condition for the diffusion equation, 
which is the hydrodynamic equation derived from the Klein-Kramers 
equation. 

In Sections 3-5 we apply our method to some cases for which the 
exact solution has not yet been evaluated. In Section 3 we consider the case 
of a partially reflecting wall, characterized by the boundary condition 

pMr(ux, x)=rp~r(-Ux, X) for Ux>0 (1.9) 

with 0 < r < 1. In Section 4 we consider the albedo problem, i.e., the case 
that particles are injected into the system at x = 0 with a prescribed velocity 
distribution g(u): 

Pg(U;O,y,z)=g(u) for ux>O (1.10) 

with the additional condition that ng(X) = ~ du Pg(U, x) goes to a constant 
for x ~ ~ (no sources or sinks at infinity). The problem can be decom- 
posed into a set of decoupled problems of the type considered in Section 2 
by expanding both g(u) and Pg(U, x) in a complete set of functions 
Zt(Uy, uz). We confine ourselves to the case that g(u), and hence Pg(u, x) 
and the Zl, depend on Uy and uz only via u, = (Uy 2 + Uz2) 1/2. Explicit results 
are given for the case 

g(u) = const,  exp( - �89 2) (1.11 ) 

corresponding to particles desorbed thermally from a wall at an inverse 
temperature 3w different from the value 3 characterizing the medium in 
which the particles move. Temperature differences between the wall and the 
medium are to be expected when the "absorption" at the wall in the mathe- 
matical description corresponds  physically to condensation in a layer 
adsorbed at the wall, or to some chemical reaction there (further comments 
on this issue are given in Section 6). When 3 and /~  differ by less than a 
factor of two, good results are obtained with a small number of functions 
X~(ut); for larger discrepancies the convergence becomes markedly poorer 
for some physical quantities (see Section 4 for further details). 

By combining the Milne and albedo problems we can treat the case of 
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partial absorption with diffuse thermal reflection of the nonabsorbed 
particles also for the case of differing bulk and wall temperatures. This is 
done in Section 5. We confirm an earlier finding (~3) that the reflection 
mechanism, and not merely the reflection coefficient r, influences x~t, and 
hence the effective boundary condition to be used with the diffusion 
equation. 

In the concluding section we first give a tentative explanation for the 
relatively rapid convergence of the moment method. We further discuss 
some possible generalizations, especially to more general forms of the colli- 
sion operator cg and to more realistic treatments of temperature differences 
between medium and wall. We include some first results for the simplest 
BGK operator of type (1.2). Finally, we briefly comment on the modifica- 
tions needed to treat geometries of spherical, rather than planar, symmetry, 
a subject to be treated in a forthcoming paper. (~4) 

2. T H E  M O M E N T  M E T H O D  A N D  ITS A P P L I C A T I O N  TO T H E  
M I L N E  P R O B L E M  

The function p~(ux, x) defined in (1.5) obeys the equation 

8 1 0 

- [ ~  + ~ ]  pM(Ux, x)  = o (2.1) 

In the remainder of this paper we shall use units with 7 = mfi = 1; this 
implies that lengths are measured in units of the velocity persistence 
length (15) l=7-1(mfl) -m,  the analog of the mean free path for Brownian 
particles. Further, we shall denote ux by u in the present and in the 
following section, where other components of u play no role. Equation 
(2.1) has two Chapman-Enskog-type solutions, the equilibrium solution 

1 
~0(u, x) = ~bo(U) = (2~)1/2 exp( - �89 2) (2.2) 

and a solution carrying a current - 1 ,  

v'c(u, x) = ( x -  u) ~0(u) 

There are additional solutions of the form 

(2.3) 

~+,(u,  x ) =  [exp(-T-x2,)] ~_+~(u) with 2n=x/-n (2.4) 
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and ~k+n(u ) a set of functions first determined by Pagani, (16) also given in 
ref. 12. The function pM(u, x) must have the form 

pM(u, x) = ~'c(u, x) + ~ cly~'+.(u, x) 
n = O  

(2.5) 

It was shown by Beals and Protopopescu (17) that there is a unique set of 
coefficients dff  such that pM(u, x) obeys the boundary condition 

pM(U, 0) =~ for u > 0 (2.6) 

The expansion (2.5) is not very suitable for numerical purposes, however; 
the approximants dn MN that minimize 

AM=fo duue "2/2 ~c(u, 0)+ dMN~+,(u,O) (2.7) 
n = O  

converge very slowly toward the exact dff. ~12'1s) 
It turns out to be advantageous to use approximate O+,(u) instead. 

These are obtained by first expanding pM(u, x) in the eigenfunctions (~m(U) 
of Cg with eigenvalues --m, ~ls) 

~ m ( U )  = m! (2re) 1/2 2 m/2 e (2.8) 

where Hm(~) is the mth Hermite polynomial. The streaming operator 5 a 
can be written as (15) 

5a= -[-a+ + a  ] ax (2.9) 

where the raising and lowering operators a+ and a obey the relations 

a+~bm = (m + 1) ~bm+l; a_ Om =- E l -- (~mO] q} m ~ (2.10) 

By taking scalar products with the left eigenfunctions of c~ biorthonormal 
to the ~b,(u), 

we can expand any function of u, and in particular, the On(u) (we hence- 
forth omit the + sign in the index), in terms of the ~bm(U): 

0 , (u)=  ~ C,m~m(U) (2.12) 
m = 0  
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In this representation the defining eigenvalue equation 

[ c g + 2 ( a + + a  ) ] t~ . (u)=O (2.13) 

becomes the set of recursion relations 

m2,,c . . . .  1 - mGm + 2,c,,~ + 1 = 0 (2.14) 

which can be written in matrix form as 

a ( , L )  �9 c .  = 0 (2 .15)  

Since both ~ and (a+ + a _ )  are Hermitian with respect to the scalar 
product 

(~b, Ip) = (2~) 1/2 f du ~(u) ~(u) e ~2/2 (2.16) 

which translates into 

(2.t7) 

the eigenvalues 2, of (2.15) must be real; from the invariance of (2.14) 
under the transformation 

2--, -2 ;  e m - - , ( - 1 )  m em (2.18) 

one sees that they occur in pairs of opposite sign. 
N used in our calculations are obtained by trun- The approximate c ,  

cating the infinite matrix ~;(2) at order 2 N -  1. For N =  2 we so obtain (ii0 - | 
2 - 2  t2.19t 

0 3;. -3 / \e3V 

Since the Hermiticity properties of ~ are preserved by the truncation, as is 
the invariance under (2.18), the eigenvalues of (2.19) are again real; they 
occur in pairs, but for the eigenvalue 2o = 0, which belongs to c u with 
C0Nm := C$mo , the representation of gto(U, 0) defined in (2.2). We always find 
N - 1  distinct positive eigenvalues, which we label 2 u (n=  1,..., N - 1 )  
in ascending order. The 2 N always exceed x/-n, but approach it from 

N all have a above as N-+ oo. The associated generalized eigenvectors c ,  
nonvanishing C,0,N which is made equal to unity by the normalization of c N, 
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N From (2.11) one sees that this implies that the and a vanishing %1. 
approximants 

~UN(u, x) = exp[ U - 2 ~ x ]  
2N 1 

E CLam(U1 ( 2 . 2 0 )  

m = O  

all have unit density at the wall and zero current. 
We now choose as the approximant of order N to the Milne solution 

pM(U, X) the expression 

N 1 

pU(u, X) = gtc(U , X) + ~ aNM,,N,, ~n tU, X) (2.21) 
n=O 

N where the % are chosen to obey the Marshak condition (91 

fo dupU(u,O) u2k+l=O for O<~k<<.N-1 (2.22) 

For  N--, oe this becomes equivalent to (2.6): since the powers u k are com- 
plete on ( - o %  + oo), the odd powers alone (or the even powers alone) are 
complete on (0, oo). Using (2.21), (2.20), and (2.3), we can write the condi- 
tions (2.22) as 

N - - 1  2 N - -  1 
NM EO~n Z ~ N r l , r k  irk CnmJVlm=Jgll, O < ~ k ~ N -  1 (2.23.) 

n = O  m = 0  

with 

Mkm = du u 2k + t~b,~(u) (2.24) 

N These N conditions allow one to determine the N coefficients %.  
The approximants p~(u,  0), 2o 3o PM(U, 0), and shown in PM(U, 01 are 

Fig. 1. These functions come closer to fulfilling (2.6) than the approximants 
using 35, 70, and 140 exact r  given in Fig. 2 of ref. 12. For  not too 
small negative u, good convergence is obtained. The same holds for the 
approximate density profile 

n (x) = f p (u, x) 
N - - 1  

x+ o E  . Mexp[ = - 2 , x ]  (2.25t 
n = l  

NM goes to the Milne length x M defined in (1.8).] For  [-One sees that ~o 
large enough N the aUM and nU(x) depend smoothly and monotonically 
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Fig. 1. The distribution PM(u, 0) of the velocity normal to the wall at a fully absorbing wall, 
as approximated using 10 (dotted line), 20 (dashed line), and 30 (solid line) moments. The 
exact solution vanishes for u > 0. 

on N, and we can use the empirical extrapolat ion (1.7). For  x ,  we find an 
exponent  c~ ~ 1.5 and an estimate 

X M - -  1.46035 __+ 0.00001 (2.26) 

where the error  is determined by compar ing  fits of type (1.7) for different 
groups of  five successive N values. 2 Our  result (2.26) agrees with the exact 
result (4) XM = --if(l/2) to the precision given. In  a double-precision calcula- 
tion (16 significant digits) the quality of  the approximants  decreases 
beyond N-~  25 due to the effect of roundoff  errors, which are amplified by 
the large differences in magni tude  of the coefficients in (2.23). The same 
procedure  works for riM(X), though the convergence exponent  is smaller 
(6 "~ 0.75 for x = 0), and the number  of  significai~ .igures obtained is less. 
The results for the boundary  layer par t  of the profile, InM(X) -- X - -  XM[, are 
given in Table I, together  with the exact results of Marshall  and Watson/4)  
with which they agree to within the numerical error. In particular, the non-  
analytic behavior  of riM(X) near x = 0, 

riM(X) ~ n~(O) + (2/re) TM x / x +  C(x)  (2.27) 

2 If there is a definite trend in these extrapolations, a second fit of type (1.7) is used to obtain 
a better estimate. 
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Table I. The Boundary Layer Part of the Density Profile 
- -nb(X ) = [nM(X ) - -  X - -  X M I  at a Fully Absorbing Wall for 

Several Values of x a 

x 0 2 8 2-6 2-4 2 2 1 

Present method 0.524_ 0.4_7 0.41 * 0.33_4 0.201 0.0601 _1 
Exact solution 14~ 0 .52424  0.47056 0.41516 0.33386 0.20120 0.06011 

a The estimated error is one unit in the underlined digit; an asterisk signifies that no reliable 
error estimate can be given. 

is reproduced very well. This is somewhat  surprising, since the sma11-x 
behavior  of the approximants  nU(x) is domina ted  by the contr ibutions of 
the N gtn (U, X) in (2.21) with n close to N. These approximate  generalized 
eigenfunctions of (2.15) are heavily influenced by the truncation, and bear 
no resemblance to any of the actual gt,(u, x). Still, they are apparent ly 
successful in helping to mimic the true behavior  of riM(X). 

3. P A R T I A L L Y  R E F L E C T I N G  W A L L S  

In  this section we generalize some of  the results of the preceding 
section to the case of  a partially reflecting wall. We shall confine ourselves 
here to the case of specular reflection, with a reflection coefficient r that  
does not  depend on the velocity u at impact. This implies that  the solution 
still has the general form (1.5). (We shall consider more  general types of 
reflection in Section 5.) The required solution pMr(U, X) must  satisfy the 
boundary  condi t ion (12) 

pMAu, O)=rp~r(-u,O) for u > O  (3.1) 

This problem provides a sensitive test for the momen t  procedure,  since the 
function p~t,.(u, x) is known to be even more  strongly nonanalyt ic  at 
u = x = 0  than pM(U,X). For  small [u[ one has, e.g., (19) 

with 

pMr(u, O) ~ cons t ,  lul =(r) E O ( - u )  + rO(u)l 

c~(r) = ~ - ~ arcsin 

whereas the density profile nM,.(x) has the form 

nMr(X) = nMr(O) + const -  x E1 + ~(r)7/3 + (9(X) 

(3.2) 

(3.3) 

(3.4) 
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We determined approximants  N pMr(U, X) by the method of Section 2, 
with the boundary condition (3.1) replaced by 

fo 
du uZk+ipMr(U, 0 ) = r  du lu]2k+lPMr(U , 0); O<~k<~N- 1 (3.5) 

- - o o  

The results for N =  25 and some values of r are shown in Fig. 2. Not  sur- 
prisingly, one sees only a vague indication of the singular behavior (3.2) in 
these analytic approximants.  For not too small lul we find good con- 
vergence, however. In Fig. 3 we show the approximants to nMr(X), multi- 
plied with XM/XMr for ease of comparison. The values of XMr used are 
obtained by extrapolation of the x~t r using the fit (1.7). Also indicated in 
the figure are the extrapolated wall densities n~r(0). The steepening of the 

prof i le  with increasing r, read off from (3.4), is also clearly indicated by the 
approximants  shown in the figure. 

The extrapolated values for XMr and the scaled density at the wall 

dMr -- nMr(O)/XMr (3.6) 

are given in Table II, together with the respective convergence exponents 6. 
The latter decrease with increasing r. This is not unexpected, since the 
convergence exponents for the variational method of ref. 12, which are 

? 

D.5 

n 

, , i , [ l l , l r , l r ,  
-3 -~ -i 

U --> 
' ' ' '  I ' ' ' ' ' ' ' ' '  

Fig. 2. The velocity distributions pMr(u, 0) at a partially absorbing wall with specular 
reflection, for values r = 0, 0.3, 0.6, and 0.9 of the reflection coefficient, as approximated with 
25 moments. The values of r increase in the same direction as the p~r(u, 0) for u > 0. 
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i f  

. . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  t . . . .  i . . . .  i . . . .  

0. I  ;3,2 ~.3 ~.4 ~.5 8.6 ~.7 E~.8 ~,9 
• - - >  

Fig. 3. The density profile nMr(x ) near a partially absorbing wall at x = 0, with specular 
reflection and reflection coefficients r = 0, 0.3, 0,6, and 0.9, approximated with 25 moments .  
The arrows indicate the extrapolated densities at the wall; the dashed curves are the 
asymptotes nas(x)= xM(x + X~tr)/XMr. The solutions are normalized such that the asymptotes 
all  intersect at x = xM0; the values of r increase with decreasing steepness of the profiles. 

smaller by roughly a factor of three, can be shown to follow a similar 
trend/2~ We also include the lowest approximant XMr,1 equal to an 
expression proposed by Bethe et  al. (21) for a similar problem, and given by 

XMr-- 1 - - r  

It is obtained from the Chapman-Enskog-type trial function 

p~r(u, x)= ~ec(u, x) + xMr' ~'o(~, x) (3.8) 

Table II; The Mi lne Length XMr and the Relative Density at the Wal l  
dMr=nMr(O)/XMr, wi th  Their Convergence Exponents, for Partially Absorbing 
Walls w i th  Specular Reflection, As a Function of the Reflection Coeff ic ient  r ~ 

r x~r 6x xM dr(O) 6a 

0 1.4603_5 1.5 1.2533 0.641 0.75 

0.3 2.616_5 1.4 2.3276 0.711 0.71 

0.6 5.3991 1.25 5,0133 0.80_5 0.63 

0.9 24.31 _7 1.1 23.813 0.9399_ 0.55 

a The simple estimate ~'~/r is given for comparison. Errors are indicated as in Table I. 
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The difference (XM, 1 --XMr) gives an indication of the importance of the 
kinetic boundary layer for the value of XMr. This importance is seen to 
decrease with increasing r (which means decreasing frustration of the 
approach toward local thermal equilibrium by the boundary condition). 

We conclude this section with a remark on the significance of the 
parameter XMr. The asymptotic density profile 

n . . . .  (3.9) M r [ X )  = X "~ X M r  

clearly obeys the boundary condition 

an~t,(x) l = 1 n as m~ (3.10) 
Ox Ix=o X M r  MrkV ! 

when extrapolated toward x = 0 .  Moreover, it clearly satisfies the 
stationary diffusion equation 

~2 
#x--- 5 naS(x) = 0 (3.11 ) 

as required for a density belonging to a Chapman-Enskog-type solution of 
the Kramers equation./15) This suggests using the boundary condition 
(3.10) with the time-dependent diffusion equation 

(~ as 1~2 
n (x, t) = n"S(x, t) (3.12) 

to determine the density associated with a time-dependent solution of the 
Klein-Kramers equation in the hydrodynamic stage (for values of x not 
too close to the wall). This recipe, which can be justified more fully, (2~ is 
an example of the extraction of a boundary condition for a hydrodynamic 
equation from a boundary condition on the kinetic level. 

4. THE ALBEDO PROBLEM 

In this section we consider the case that the wall at x = 0 acts as a 
source of Brownian particles: particles with velocity u are injected into the 
medi'um at a constant rate, independent of y and z, which we denote by 
ux g(u). The particles are removed from the system when they return to the 
wall. A diffusing particle is certain to reach the plane of origin again 
eventually (4) (this is a variant of the well-known "gambler's ruin theorem"). 
Hence, in the stationary state there are as many particles returning to the 
wall as there are injected: no net current flows unless there are sources at 
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infinity. From this one sees that there is a second possible physical 
interpretation: no particles are created or absorbed at the wall, but any 
particle hitting the wall is reflected back into the medium in a completely 
diffuse way, so that the probability distribution of reentrance velocities is 
completely independent of the impact velocity. To obtain a nontrivial 
stationary state, this distribution of reentrance velocities must of course 
differ from the equilibrium distribution ~o(U)=Oo(Ux)Oo(Uy)(Jo(U~). 
Whatever the interpretation, the stationary distribution, called Pg(u, x) 
must obey the Klein-Kramers equation with the boundary condition {221 

eg(u, 0) = g(u) for u:~>0 (4.1) 

The solution of this problem is greatly simplified because the collision 
operator c~ can be written as 

cg=cgx+Cgy+r cgi=ffUTu ue ~u,. (4.2) 

Since Pg(u, x) does not depend on y or z, ~ contains only u~, and it is 
advantageous to expand g(u) and Pg(u, x) in the common eigenfunctions of 
% and cg~. We shall not work out the general case, but assume that g(u), 
and hence P(u, x), depends on uy and u~ only via 

2 2 1/2 u, = (uy + uz) (4.3) 

When acting on such functions, cs can be replaced by 

with 

~ = c69~ + ~ (4.4) 

(4.5) 

[for general g(u), (4.4) has to be supplemented by a term % acting on the 
orientation of the two-dimensional vector (Uy, uz)]. 

One readily checks that the function Zj(u,) defined as 

1 
"~U t ) L ~ ( g u  t ) (4 .6 )  Z t ( u , ) = ~ e x p (  1 2 , 2 

with Lt(r the lth Laguerre polynomial, are eigenfunctions of ~gt with 
eigenvalues - 21: 

cs =- -2lz , (u , )  (4.7) 
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From the properties of the Laguerre polynomials and the Hermiticity of 
with respect to the scalar product 

( f ,  g)~ = 2r~ ~ dut ut exp(�89 2) f(u~) g(u~) (4.8) 

one sees that the eigenfunctions biorthonormal to the Z~ are 

)~,(u~) = 2~ exp(�89 Z~(u~) (4.9) 

By taking (4.8)-type scalar products with the )~, one decomposes both 
Pg(u, x) and g(u): 

P~(ux, u~, x)= ~ p~t(ux, x) z~(u,) (4.10) 
l 

g(Ux, u,)= Z gt(ux)Zz(U,) (4.11) 
l 

The Pgt(ux, x) clearly must obey the modified Klein-Kramers equation 

- U x ~ x + % - 2 l  pg,(Ux, x ) = 0  (4.12) 

and the boundary condition 

pg~(ux, O)= gl(ux) for ux>O (4.13) 

The solution of this boundary layer problem is again found by writing 
Pgl(Ux, X) as [cf. (2.21)] 

Pgt(Ux, x) = ~ df~gt, l(u x, x) (4.14) 
n- -O  

with 
~t(u~,  x ) =  exp( -  2,~x) ~,~(Ux) (4.15) 

and 2,l and ~,~(u) the positive eigenvalues and corresponding eigenfunc- 
tions of the generalized eigenvalue problem 

[cg~-Zl+2,l(a+~+a_~)] ~,~(u~) = 0 (4.16) 

The exact O,~(ux) and 2,~ can be found by a straightforward adaptation of 
Pagani's method (~6) (see also ref. 23). The results are 

~ ,~,( ux) = const " H,, I-~2 { u:~- [ 2( n + 2l) ] ~/2 } l 

{1 } 
x exp - ~ [Ux-  (n + 2/)1/2] 2 (4.17) 

2~l = (n + 2l) 1/2 (4.18) 

822/56/'3-4-16 
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As in the Milne case, we construct approximants t o  pgl(Ux, x) of the form 

with 

N - - 1  
N .vNgl(flN[1 j 

Pgl(Ux, X ) =  2 X) ( 4 . 1 9 )  ~n ~ n l ~ x ,  
n=O 

2N 1 
N ~tnl(Ux'X)=exp(--)~Nnlx) 2 N CnlmOm(Ux) ( 4 . 2 0 )  

m = 0  

The N C,t,, are determined as in Section 2, with ~(2)  in (2.15) replaced by 
Ngl follow from the Marshak-type conditions ~ (2 ) -21D,  and the ~n 

fo fo 2 k +  1 N d u  x u x 7J~t ( U x , O) = d u  x " 2k + u z l g l ( U x ) ;  O < ~ k < ~ N - 1  (4.21) 

As before, N N such that cnt o can be shown to be nonzero, and we normalize cnt 
N equals unity. C nlO 

We carried out some calculations for the special case 

g(u) = ~ e - ~ w " 2 / 2 0 ( u x )  (4.22) 

where the normalization is chosen such that a unit current j+  is injected 
into the medium. The corresponding g ~ ( u z )  are 

g , ( u ~ ) = f l w e  ~2/2 (1 - ~w)~ (4.23) 

Ngl Good  convergence is obtained for the individual expansion coefficients ~, 
defined in (4.19), as well as for the density profile 

rig(X) = dng~ ~,0~. (4.24) 
n = 0  

In Table I I I  we give n(0) and n ( ~ ) = d  g~ for f l~=0.5 and f l~=2.  [-For 
flw = 1 one obtains the flat profile n ( x )  = ( 2 7 r )  1/2 - 2.5066.] The increase of 

Table  III .  T h e  Density at the Wall, n(O), and at Inf ini ty,  n ( ~ ) ,  w i th  
Their Convergence Exponents, for  the Albedo Problem w i th  a 

Thermal Source of Uni t  Strength,  at Two Relative Inverse Temperatures 13 w ~ 

//~ n(O) 6o n(oo) 6 

0.5 2.00_9 0.66 3.0940_ 1.66 
2.0 3.230_ 0.77 2.0565 1.66 

a For flw = 1 both values are (2~) m - 2.50663. Errors are indicated as in Table I. 
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n(oe) with increasing T ~ = / ? ~  ~ is reasonable: the higher the injection 
velocity, the longer the distance the particle travels before it has lost the 
memory  of its initial velocity, and the lower its probability for a rapid 
return to the wall. The general form of the density profile can be under- 
stood from the temperature profiles and the relation ~12~ 

t'lg(X) Txg(X ) =-- f du Pg(u, x) u 2 = ng(O0) ( 4 . 2 5 )  

which is proved in the Appendix. The profiles for T~g(X) and the analogous 
transverse quantity 

1 l fduPg(U,X) 2 (4.26) T,g(x) - r i g ( X )  2 u, 

are shown in Fig. 4. [The density profiles can be determined from those of 
T~g(X) using (4.25).] As expected, both T~g(X) and T~g(X) approach unity 
(the medium temperature) for x ~ oe. The approach is faster for T,g(X); 
this is clear from the explicit expressions for T~g(x) and T~g(X) in the 
Appendix, but also intuitively: u~ and u, are uncorrelated, both in their 
initial distribution and in their decay, and only a high starting value of Ux 

A 
I 
I 

125 

rx 

x 
~J 

1.5 �9 

. . . .  d . i  . . . .  o ' .~  . . . .  o ' .3  . . . .  o ' .4  . . . .  ~ ' .~  . . . .  ~ ' .~  . . . .  d . ~  . . . .  d . ~  . . . .  ~ ' .~  . . . .  

x - - >  

Fig. 4. Profiles for the normal temperature T~(x) (solid lines) and the transverse tem- 
perature Tt(x) (dashed lines) near a diffusely reflecting wall at an inverse temperature flw 
different from the value B in the medium. Approximants are calculated with 30 moments, and 
for flw/fl = 0.5, 0.8, 1.2, and 2. The higher curves correspond to the lower values of ~w/~. Note 
that neither Ti(x) approaches flw r at the wall. 
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helps the particle to penetrate deeply before it loses memory  of its initial 
velocity. Note  also that  the Tig(x) do not  approach  /~w t for x - + 0 .  This 
temperature j u m p  reflects the fact that  only particles leaving the wall have 
a temperature/3~-1; the returning particles have thermalized to some extent. 

The full distr ibution functions Pg(U, x) contain contr ibutions from all 
Zt(ut), hence one has to consider their convergence properties both  with 
respect to I and with respect to N. These properties were studied in some 
detail, (24/but we give only the main features. For/~w not  too different from 
unity, good  convergence is obtained with a small number  of  Zz (6 or at 
mos t  11). As before, the singular structure at u x = x = 0 is not  reproduced 
very well, but  the error decreases with increasing ut. As an illustration we 
show in Fig. 5 the approximant  to P(ux, ut, 0) for /~w = 1.2 with /max = 5 
and N = 3 0 ,  together with the "target function" g(u~, ut)O(ux). For  
/~w < 0.5 or  /~w > 2 the convergence for the distribution function becomes 
markedly worse. In  particular, the approximants  for fixed /max show 
oscillatory convergence with N; for /~w = 2 and u~ = 0, no convergence is 
seen before roundoff  errors make  the results unreliable. For  /3w ~< 0.5 no 
convergence with /max is seen (for part  of  the range), as could have been 
expected f rom (4.23). Note,  however, that  even poor  convergence of the 
distribution function does not  preclude an accurate determinat ion of some 
of  its moments ,  such as the density or  the temperature. 

,,N 

I 
I 

@ 

<--- Ut 

~J 

0_ 

Ux --> 

Fig. 5. The distribution P(ux, u,, 0) at a wall with flw = 1.2; the boundary condition to be 
fulfilled for ux > 0 is drawn with dashed lines where it deviates from the approximant obtained 
with 30 moments in u~ and 6 in u,. Note the slower decay with lull (higher temperature) of 
the returning particles (u~ < 0) compared with the injected ones (ux > 0). 



Moment  Method for Boundary Layer Problems 489 

5. DIFFUSE PARTIAL REFLECTION 

The case considered in Section 3 is only a special case of a partially 
reflecting wall. The most general model is obtained by specifying a 
probability ~(ulu')  that a particle hitting the wall with velocity u' is 
reinjected with velocity u. The corresponding boundary condition for the 
Klein-Kramers equation is (13'22) 

uxP(u, 0) = [ du' a(uiu')lu'xl P(u', 0); ux>O (5.1) 
J, [~<0 

The associated reflection coefficient r(u') can be defined as 

r(u') = [ du a(u I u') (5.2) 
d 

and the absorption probability equals a (u ' )=  1 - r ( u ' ) ;  we shall always 
assume that r(u') is less than or equal to unity, and exclude the case 
r(u') - 1, already treated in Section 4. 

We postpone the discussion of the general case till later in this section 
and first consider the case of a separable a(ulu'):  

a(ulu')=uxg(u)r(u'); f duuxg(U)= l (5.3) 

Physically this means that the velocity distribution of the reinjected par- 
ticles is independent of u'. Hence we shall call (5.3) the diffuse reflection 
case. For this case the solution carrying a unit current in the negative x 
direction has the form 

P~(u, x) = PM(u, x) + ArPg(u, x) (5.4) 

where PM and Pg are  the Milne and albedo solutions constructed in Sec- 
tions 2 and 4, respectively, and A r is a constant that can be determined by 
substitution of (5.3), (5.4), and (1.4) into (5.1), and integration over u: 

A t =  f du' lU'xl r(u')[PM(U',O)q-ArPg(u',O)] (5.5) 
at, 2<o 

For an r(u') independent of u' this takes the simple form 

At=r (1  +At )  or Ar=r/(1-r) (5.6) 

From (5.4) one immediately derives expressions for n(x), and in particular 
for the Milne length: 

XMrg = XM ~1- Ardg ~ (5.7) 
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TablelV.  The Mi lne Length XM~g for Partially Absorbing Walls wi th  
Diffuse Reflection As a Function of Reflection Coeff ic ient  r and 

Inverse Wal l  Temperature [ ~  ~ 

X Mrg 

r p~=0.5 ~.~=1 /L=2 xMr 

0.3 2.7864 2.53462 2.3417 2.6165 
0.6 6.1014 5.22029 4.545! 5.399! 
0.9 29.306 24.0200 19.969 24.317 

The values for specular reflection XM~ are given for comparison. Errors are indicated as in 
Table I. 

The values for Xgrg for some values of r and some g(u) discussed in Sec- 
tion 4 are given in Table IV, together with the values XMr from Section 3. 
One sees that the effective boundary condition in (3.10) depends not only 
on the reflection coefficient r, but also on further details of the reflection 
mechanism. 

The profiles for T~o(x) follow immediately from the n(x) and 
n(x) T,(x) derived from (5.4) [note that T~(x)= 1 for PM(U, X)] 

Try(x) - nM(X) + Arng(X) T,g(X) (5.8) 
riM(X) + A~ng(x) 

The calculation of Tx~(x) is somewhat more involved, however, since ( u ~ )  
no longer vanishes, and one must use the definition 

Tx = (u  2) - ( u x )  2 (5.9) 

The quantity (Ux) vanishes for Pg(U), but for PM(II) one has 

JxM = f du uxPM(u , X) = nM(X)(U~,)M (X) = --1 (5.10) 

The resulting expression for Tx~(x) is written out in the Appendix, where 
we also give expressions for n~(x); Tt,(x), and Tx~(x) in terms of the e ~ g  
and the ~,Ngt. In Fig. 6 we give an example of the resulting profiles Tx~(x ) 
and Try(x). In Tx,(x) the cooling influence of the constituent PM in (5.4) 
counteracts the heating influence of the Pg contribution for a hot wall; for 
not too large r the former is dominant. Further examples of density and 
temperature profiles are given in ref. 24. 
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Fig. 6. The temperature profiles T~(x) (solid lines) and Tt(x ) (dashed lines) near a partially 
absorbing wall with diffuse reflection at a temperature twice that of the medium, for reflection 
coefficients r = 0, 0.3, 0.6, and 0.9. The higher curves correspond to the higher reflection 
coefficients. 

To conclude this section, we briefly consider the general case (5.1). 

When  ~(u, u ' )  is invar ian t  under  a s imul taneous  ro ta t ion  of u and  u' 
a round  the ux axis, the solut ion may be writ ten as 

P~,(ux, ut,  x )  = ~,  p~,t(Ux, x )  Z l (u , )  (5.11) 
1 - - O  

The P~l (ux ,  x )  with l >  0 must  vanish for x ~ o% whereas 

p~,o(Ux, X) "~ 9gc(ux, x ) +  xM~,O~o(Ux) (x>>l )  (5.12) 

with XM~ to be determined.  At x = 0 one has the bounda ry  condi t ions  

u~p~i(u~, O) 

= du'G~,(u~lu') lu'l p~/u;,0) (u~>0) (5.13) 
l ' ~ O  - - o o  

with 

o,,,tuxju;)=f au, f <5.14) 
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where dut stands for duy duz and du; for du'y du'z. The coupling between the 
various I makes for a quite complicated numerical problem. A tractable 
case of some practical importance arises for a mixture of diffuse and 
specular reflection 

a(ulu')=rauxg(Ux, U,)+rsO(Ux+U'x)O(ut-u~) (5.15) 

In this case the solution is a linear combination of PMr~(U, X) discussed in 
Section 3 and a multiple of the modified albedo solution Pgrs(u, x) obeying 

Pgrs(Ux, Ut, O)=g(u)+rsPg,s(-Ux, Ut, O) (ux>0) (5.16) 

In the latter problem the equations for different l decouple again, and only 
the l=  0 component is needed to determine the coefficient Agr~,'s of (5.16) 
in the full solution. 

6. CONCLUDING REMARKS 

In this section we shall first comment on the successes and  
shortcomings of our method and on its applicability to more general colli- 
sion operators. In that context we present first results for the application 
to the BGK collision operator (1.2). Next we compare our results for the 
effective boundary condition in (3.10) with some recent proposals in the 
literature. We then sketch some ideas for a more realistic treatment of 
problems in which wall and medium are at different temperatures. Finally, 
we discuss the extension of our treatment to different geometries, especially 
to the problem of a (partially) absorbing sphere, treated more fully in a 
forthcoming paper. ~14) 

The advantage of replacing expansions of type (2.5) in terms of the 
exact boundary layer functions (used also in the exact solution ~3'4)) by a 
sequence of expansions'of type (2.25) in terms of approximate boundary 
layer eigenfunctions is the much faster convergence of the latter procedure. 
A tentative (and certainly far from rigorous) understanding of this 
phenomenon can be obtained by considering (4.17), which for / = 0  
becomes the ~n(u) used in (2.5). It has n zeros, all lying in the interval 
(0, (8n)1/2). Thus, truncating (2.5) at order N roughly corresponds to 
cutting off a Fourier transform at k ~  N ~/2 [-the dominant wavelength in 
~N(u) roughly equals the spacing of its zeros]. The highest approximate 
eigenvalue U 2N 1, on the other hand, turns Out to beof  order N 3/2 (com- 
pared to N t/2 for the exact 2N_1) , and the zeros of the associated 
approximate eigenfunction have a correspondingly smaller spacing. Thus, 
the highest Fourier component taken into account, albeit in a very rough 
way, is of order N 3/2. Since all P(u, 0) considered in this paper are non- 
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analytic at u--0,  their Fourier transforms in general decrease like k -~ for 
large k with e varying from case to case; thus, the cutoff errors for 
moments of P(u, 0) can be expected to vary also like some inverse power 
of kc, say like kc  r. Thus, it appears not unreasonable that the convergence 
exponent 6 in fits of type o~N-=o~mq-o:'N -~ should about triple after 
replacement of the exact by the approximate eigenfunctions, which is 
roughly what we find. 

The main disadvantage of our method is its reliance on fits of type 
(1.7). One knows (18) that the errors made in the scheme of ref. 12 behave 
in this way asymptotically for large N, though logarithmic corrections are 
known to occur for some special albedo problems. (2~ For our approxima- 
tion scheme there is no such theorem, and the fit (1.7) is merely heuristic, 
though no errors were found to arise from it for quantities known exactly. 
However, occasionally we did not succeed, due to accumulating roundoff 
errors, to go high enough in N to reach the asymptotic region. The situa- 
tion might be improved by using extended precision, or conceivably by 
optimization of some of our algorithms. Some features of the solution, 
however, in particular the singularity structure near .u = x = 0, are probably 
easier to determine by applying asymptotic analysis (Is) or by evaluating the 
exact solution. 

The main advantage of our method is its relative insensitivity, at least 
in principle, to the detailed structure of the collision operator cg. Of course, 
there is no guarantee that the same favorable convergence properties will 
be found for arbitrary cg. As a first test in this respect we treated an exactly 
solved case of BGK type, namely the BGK operator for a highly diluted 
impurity species in a carrier gas in thermal equilibrium: 

cgP(u, x) = -7[P(u ,  x) - ~bo(U) f du' P(u', x)] (6.1) 

where ~bo(u ) stands for the three-dimensional Maxwell distribution at the 
temperature of the carrier gas. The Milne problem for this case (or rather 
a combination of Milne and albedo problem of the kind treated in 
Section 5) was shown to be reducible to the Kramers problem (z) by 
Ytrehus et al. ~25) The exact value for the Milne length is thus equal to the 
slip coefficient (with the dimension of a length) for the Kramers problem, 
which in our units is 

a B G K  1.43705... (exact) M 

The value we obtain is 

aB~: 1.4371 +0.0001 (moment method) m = 
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The agreement is the more remarkable since the exact spectrum of relaxa- 
tion lengths 2 is continuous, apart from the discrete eigenvalue )~ = 0, and 
extends from 0 to oe; the associated generalized eigenfunctions are highly 
singular. ~2) Thus, our approximate N ~u n (u, x) [-cf. (2.20)] do not correspond 
to any identifiable feature of the exact solution. Our results for the density 
nM(x) at some values of x are given in Table V, together with the exact 
results of ref. 25. For higher values of x no error estimate can be given, 
since the range of N for which (1.7) applies is not large enough. The agree- 
ment between our method and the exact results is somewhat less impressive 
than in Table I. This may be due to the shortness of the asymptotic region 
in N. Also, since r Mnm~'tu, 0) is known to have a logarithmic singularity in 
its derivative at u = 0, the possibility of logarithmic corrections to the error 
estimates (1.7) cannot be excluded. 

Our results for xM and xMr, and hence for the effective boundary con- 
dition in (3.10), are pure numbers; in standard units they depend on 7 only 
through the scale factor l. Thus, they could never have been determined 
perturbatively by the Chapman-Enskog method, which is formally an 
expansion in 7 1, and physically a small-gradient expansion; as such it is 
bound to fail at the boundary, where, e.g., the gradient of the density is 
infinite in most cases. (18'2~ A Chapman-Enskog-type derivation of the 
boundary condition by Chaturvedi and Agarwal (26) gave a result reducing 
to the simple approximation (3.7) for the stationary case without an exter- 
nal potential, independent of the details of the scattering mechanism at the 
wall, a result clearly at variance with our more accurate results. The correc- 
tion terms in ref. 26 are relevant only for the nonstationary case, or in the 
presence of external potentials. They are again approximations, albeit 
reasonable ones, of a quality comparable to (3.7). In two recent papers by 
Menon and Sahni (27) and Menon (28) a rather different expansion is used; 
these authors also derive the expression (3.10) (xMr equals the average of 
u 2 for a solution of unit current(12)); they then determine the distribution 
function by iterating a Green's function equation in terms of the number of 

Table V. The Boundary Layer Part of the Density Profile 
--nb(X ) = InM(X) --X--XMI for Di lute Impurit ies at a W a l l  That 

Absorbs All Impurities, As Calculated in the B G K  M o d e l  a 

Present  m e t h o d  0.437 0.173_ 0.10 0.065 * 0.043 * 

Exac t  ~25) 0.435804 0.171224 0.100032 0.067230 0.046775 

a The e r ror  is one uni t  in the under l ined  dec imal  place;  an as ter isk  denotes  tha t  no rel iable 
er ror  es t imate  can  be given. 
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encounters of the particle with the wall (real or virtual). This expansion 
can be expected to converge toward the right distribution function, (29) but 
it is completely different from the Chapman-Enskog expansion. We 
comment no further on the effects of potentials and nonstationarity, since 
those topics will be treated in detail in forthcoming papers. ~2~ 

The models treated in Sections 4 and 5 with/~w ~/~ are not meant to 
be a realistic description of a medium in contact with a wall at a different 
temperature; the wall will of course exchange heat with the medium as well 
as with the Brownian particles, and there will be a kinetic boundary layer 
in the medium, too. However, when the mean free path for the medium 
molecules is small compared to the velocity persistence length of the 
Brownian particles, the latter will not see the detailed structure of the 
medium boundary layer, but merely a linear temperature gradient and a 
sudden temperature jump at the wall: 

T ( x ) ~ _ T w [ 1 - c ~ ( x + x T ) ]  for x > 0  (6.2) 

with xT the temperature jump length, a quantity analogous to the Milne 
length. Thus, one has to solve the boundary value problem for the 
Klein-Kramers equation in the presence of a temperature gradient in addi- 
tion to the temperature jump. Such a problem was considered in a recent 
paper. ~3~ The equilibrium solution ~o(U, x) and the current-carrying solu- 
tion ~Uc(u, x) can be constructed; for the boundary layer solutions at least 
a perturbation theory, with c~ as the perturbation parameter, appears 
feasible. In lowest order one is led to the (exactly solvable) case of 
Brownian motion with a constant drift. (3'4'23) 

The problem of Brownian motion in the presence of a (partially) 
absorbing sphere serves as a model system for some situations of practical 
interest: the growth of a condensation nucleus in a carrier gas mixed with 
a supersaturated vapor, or the burning of a small fuel droplet (with, e.g., 
an oxidant as the diffusing species). A preliminary analysis of kinetic 
boundary layer effects for this problem showed (31) that the number of 
particles absorbed by a droplet of radius R per unit time in a medium with 
a concentration of Brownian particles n(oo) far away from the sphere can 
be written as 

4rcR2j~bs = 4~R 2 [R  + xM(R)  ] - 1 n(oo ) (6.3) 

where xM(R)  is a curvature-dependent Milne length, approaching x M for 
R ~ oo. We recently succeeded (14) in developing a perturbation theory in 
the curvature R -1 for the kinetic boundary layer around a sphere, and in 
particular for xM(R) ,  and determined the first two correction terms using 
the techniques developed in the present paper. 



496 Widder  and Titulaer 

APPENDIX  

In this appendix we sketch the derivation of the profiles for Tt(x ) and 
Tx(x ). We start from the identities 

2 - -  ~ o ( U t ) [ ~ o ( U x  ) + ~ 2 ( U x ) "  ] (A.la) U x - -  

1 2=~0(ux)D~o(Ut ) Z1(ut)] (A.lb) ~U t 

which follow directly from the definitions (2.11) and (4.9). Taking averages 
of these quaqtities in the albedo solution, as specified by (4.10), (4.19), and 
(4.20), and using the definitions (4.31) and (4.32) and the biorthonormality 
relations, gives 

N - - 1  
n ; ( x )  N N (A.2a) T~g(x)= ~ a n exp(-2nox)(Cnoo+Cno2)=~o 

n = 0  

N - - 1  

e x p ( -  ~ o X ) - ~ ,  exp ( -2~ lx ) ]  (h.2b) nJ(x) 2 
n = 0  

In the first of these expressions we used the relation (2.14) for m = 1, which 
ensures that N N C,0 o + C,02 vanishes whenever 2, u is unequal to zero. For n = 0 
one of course has C00mN =OmO' The temperature profiles are found from 
(A.2) by substituting the expression (4.24) for ng(X). This leads to 

~o (A.3a) 
Txg(X) - nU(x) -- Z , -  NgO exp( .N 

(Z n - - A N O N  ) 

ugt e x p ( -  2~lX) '~-~n 0~n 
N __ (A.3b) 

NgO exp( -- 2N0 x) 

One sees that the longest decay length in N T~g(X) is 2~ ~-1, whereas the 

longest decay length in Ttg(X ) N  is 2OlU ~ xf2; this discrepancy in decay 
lengths is also physically reasonable, as is discussed in the text after (4.26). 

The solution (1.5) for the Milne problem can be written as 
PM(u x, x) Zo(u,), hence all - NM1 with l r  vanish. However, there are 0~ n 

additional contributions from X~o(Ux) in the current contribution 
~g~(u~, x)Zo(U,). Thus, we have 

n N  2 N ~t(x)<ux > M (x) = ~N~ + X (A.4a) 

nU(x) T N ( x )  = nU(x) (A.4b) 

To obtain TU(x) ,  we use (5.9) and (5.10) and obtain (xN= s0NM) 

X+X N 1 
TffM(X) = nU(x ) [nU(x)]2 (A.5) 
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For a linear combination of Milne and albedo solutions of type (5.4), the 
transverse temperature is obtained from (5.8). For N Tx~(x ) one obtains by 
straightforward substitution 

nN(x) rx~(X)N = XM + X + Arc~ g ~  [n2(x)]  i (A.6) 

from which the profiles TN~(x) shown in Fig. 6 follow immediately. 
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